過電流継電器~高圧受変電保護(遮断器連携)~

受電・変電

1.需要家での電気事故

電気というエネルギーは使用する際に諸々の注意が必要となることはこのサイト内でも何度か述べています。また他のサイトや情報元でも再三にわたって注意喚起されていることです。これは電気エネルギーが様々な形で非常に大きな力を発揮することに起因しています。

それだけに、電気を使用している最中に事故が起きてしまうと簡単にその被害が大きなものとなってしまい兼ねません。そして電気における事故の特徴として影響の範囲が電気的に接続されたすべてである(とても広い)ことや第二,第三の事故を呼び込みやすいことがあります。

このように、事故時のリスクが非常に大きい電気エネルギーであるだけにその保護も専用の機器を用いて厳重に管理実行されます。

皆さんの勤める企業や、利用する施設では高圧(特別高圧)という部類の電圧で受電をしていることが多くあります。中規模以上の工場や大型の商業施設など産業に関わる建築物は多くの電力を必要としますので必然的に高圧以上の受電となります。なぜそうなるのかは電力の送り出し〜送電〜に記載していますので参考にしてください。

高圧以上の電圧で受電する設備では、電気事故の発生時にその事故が周囲に大きな影響を与えてしまわないように、事故点を電路から遮断するための保護機器を設置しています。もちろん事故が発生する前に予防することが理想ですが万が一、起きてしまった電気事故に対する施策も非常に大切です。

今回この記事では高圧(主として6.6[kV]系統)における受変電設備で発生した過電流に対する保護について解説します。

低圧の分電盤や制御盤でよく見かける配線用遮断器と、その目的やはたらきはよく似ています。しかしメカニズムは少し異なりますので、このあたりについてどのような手法により過電流の影響を最小限で抑え込むのか説明します。

2.二種類の機器で保護

過電流の保護に限らずですが、高圧における事故時の保護において一般的に二種類の機器を使用します。この二種類の機器が連携して電気事故の発生時に問題の電路を含む系統を遮断します。

では、過電流発生時に遮断動作を実行する二種類の機器は各々どのようなものなのでしょうか。

それは「過電流継電器」と「遮断器」になります。

これらは各々、「短絡電流を含む過電流の検出と遮断指令」と「遮断実行」の役目を担います。検出の種別が過電圧となったり地絡となればその保護の目的も各々同様に過電圧事故時の保護,地絡事故時の保護となります。

以降、これら「過電流継電器」と「遮断器」について説明していきます。

3.過電流継電器

高圧の電気工作物に用いられる過電流継電器は「過電流を検出して電路の遮断を指令する機器」です。アルファベット表記では「Over Current Relay」の頭文字をとって「OCR(オーシーアール)」とよばれます。

「継電器」との機器名だけなら制御盤で使用する低圧用の電磁継電器のような動作を想像しますがここでの過電流継電器は「遮断」用の指令が専門です。そしてこの継電器は過負荷などによる過電流の検出時と、過電流の中でも短絡事故により大電流が生じる短絡電流の検出時で挙動が変わります。

この挙動の違いと挙動の決定(整定)について説明します。

1)「保護協調」という考え方

過電流の発生時に過電流継電器がこれを検出し遮断器への遮断指令を出力する場合、上記の閾(しきい)値となる電流のレベルとその継続時間について整定することとなるのですが、ここで大切な「保護協調」というものを意識しておく必要がでてきます。

保護協調とは、電気的な上流(電源側)に位置する遮断器と下流(負荷側)に位置する遮断器において、より下流にある事故点に近い直近上位の遮断器が最も早く反応すべきであるという考え方です。系統の中にこの協調がとれていないものがある場合、過電流による事故時の遮断を上流の遮断器が実行してしまうこととなってしまいます。そうなっては電力供給遮断による影響の範囲がより大きくなってしまい、事故とは関係のない需要家への電力供給をも遮断してしまうということになります。

この、需要家の構内を超えた事故とは関係のない系統を巻き込んだ電力供給不具合を「波及事故」といい、大きな損害を発生させてしまいます。また、需要家の構内であっても不要なエリアを巻き込んだ電力供給不具合は構内での電気を使用する機器の各種動作に支障を来します。

このようなことのないように、しっかりと保護協調のとれた整定をすることが大切になってきます。各需要家における保護協調に関しては通常、一般電気事業者(電力会社)と協議のうえ決定することとなります。実際としては電力会社側から「整定値を○○にしてください。」というような依頼がありますのでこれに従います。

2)CT(変流器)とCT比(変流比)

過電流継電器による過電流の検出においてそのきっかけとなるのがCT(変流器)です。この値で過電流継電器が出力するかどうかが決定しますので非常に大切なファクターとなります。

高圧の電流検出においてはCT比「x/5[A]」という具合に二次側の定格電流値は原則5[A]というのがスタンダードのようです。多くのCTのラインナップで上記のようになっています。CT比と電流の換算については変流器とは〜CT利用で電気を知る〜で説明しています。

過電流継電器の挙動として、例えばCT比300/5[A]であるときに過電流継電器が3[A]で出力をした場合は実質の電流値として300×(3/5)=180[A]で反応したということになります。

ただし、ここには「タップ(電流タップ)」という概念が入り込んでいます。これをどの値で設定するかによって、過電流継電器の出力に影響します。

3)過負荷電流の検出(限時要素)

過電流継電器は電路の高圧側における過電流を検出します。過電流継電器の動作は低圧の制御盤用の電磁継電器のようにコイルに電圧が印加されて接点が開閉するようなうごきとは全く異なります。機器名のとおり「過電流」を検出して接点動作による出力をします。

前述のとおり、過負荷電流と短絡電流で挙動は異なります。

一瞬にして非常に大きな電流が生じる短絡事故においては速やかに遮断する必要があります。

対して、過負荷電流においてはそれが過渡的なものであり、ごく短い時間の経過で解消するという場合であるにも関わらず、遮断動作を実行されては電力の利用に支障がでてしまいます。ですので過負荷電流ではそれが事故によるものなのか負荷機器等の仕様なのかを見極める必要があります。

よってこれらの検出では、短絡電流においてはどれくらいの電流発生で遮断指令を出力するのか、過負荷電流においてはどれくらいの電流値がどれくらいの時間継続した場合に遮断指令を出力するのかを設定できるようになっています。これらの設定に用いた値を「整定値」といいます。

①限時要素とは

先に説明したとおり、一時的な過電流が生じる度に継電器が遮断命令を出力していたのでは負荷機器の立ち上げもままなりません。ですので過電流のレベルとその継続時間で継電器の出力を制限する必要があります。この制限付き出力判断を「限時要素」といいます。「限時」という言葉が出てきていますがよく似た言葉に「時限」というものがあります。以降、筆者の解釈ではありますがこれらの違いを記載します。

「限時」も「時限」もどちらも目的の動作までにタイムラグがあるのは同じなのですが、出力までの工程に違いがあると考えます。

一般的によく聞く「時限」は動作のきっかけである「トリガ」または「フラグ」がひかれたり立ち上がった状態であり、出力動作までにタイムラグがあるというものと理解しています。すなわち「特別なアクション」の無い限りトリガがひかれた状態での出力は確定事項であり、その出力までにタイムラグがあるだけという状態を考えてもらえれば良いでしょう。出力を中断するためには先に述べた特別なアクションつまり中断命令やシステム自体の停止が必要となります。

対して「限時」はトリガやフラグ自体を遅らせるという解釈で間違ってはいないと考えます。ある閾(しきい)値や基準を超え、トリガがひかれてもおかしくない状態ではあるもののその状態における時間的変化等を監視することでトリガ自体を遅らせる動作であると考えます。ひいてはトリガやフラグに明確な一定の基準があるというより、信号レベルとその継続時間,または変化量等、一位的ではない複数の要素がトリガやフラグの基準になるというように解釈できると考えられます。ということは設計値(定格)や計測基準を超える信号であってもその変化(増加)の度合いが緩やかでかつ短時間で通常の信号レベルへ回帰(減少)する場合は特別なアクションを必要とせず出力は実行されない状態になるということです。

過電流継電器には上記のうち「限時」の考え方が採用されています。この限時での動作を実現させるためには対象となる信号である電流値と時間における基準を各々設定する必要があります。これらの設定値と算出された基準をまとめて整定値といいます。この整定値を超えたときに過電流継電器は動作することとなります。

通常、整定値として「電流タップ」と「タイムレバー」というものがあります。これらについては以降で説明をします。簡単には、後述の「動作特性曲線」をよむ為の値となります。

②遮断命令出力の基準決定と特性曲線

整定値を超える値を検出すると過電流継電器が動作するとのことですが、ではその整定値をどのように決めるのが良いのでしょうか。そのためには「電流値I[A]」の場合「時間t[sec]」で出力させるという基準に加え過電流継電器がもともと持っている出力に関する特性を考慮する必要があります。出力に関する時間的特性を表すグラフに「動作特性曲線」というものがあります。以下のようなグラフであり、これをもとに過負荷時はどれくらいの信号レベルでどれくらいの時間経過があれば遮断命令を出力するのかについて算出や設定をすることができます。

上図はタイムレバーを「10」の位置に整定している場合の動作特性曲線となります。過電流継電器を含めた電気事故時の遮断器(ブレーカ等)には必ずこのような特性曲線が存在します。

この限時特性曲線を使用して、過負荷電流発生時の過電流遮断器の動作基準を決めていきます。

③限時特性曲線のよみ方と整定値

この動作特性曲線、しっかり意味を理解するまではいったい何を表現しているものなのかなかなかわかりづらいものです。縦軸の動作時間はわかるとしても、横軸の「タップ整定電流倍数」はいったい何のことなのか、曲線は何の境目なのかは初見ではわかりにくいものです。

「特性曲線」や「特性グラフ」などは往々にしてそれをよむ為に基礎知識とその理解が求められるものとなっています。ですのでここではこの曲線が何を意味しているのかについて説明します。

以降、例としてCT比「400/5[A]」,電流タップ「4[A]」,タイムレバー「3」で整定したときに「640[A]」の過電流が生じた場合、グラフで提示された特性をもつ過電流継電器はどれくらいの時間経過で出力するのかをみてみます。後述の①~④を順番に理解することでその意味が明らかになります。

a.CT比と電流タップ

まずは電流タップについてです。電流タップについては、一般的には契約電力から導かれる電流値の150[%](1.5倍)付近をひとつの基準として整定されます。とはいえ最も重視すべきはやはり保護協調であり、該当過電流継電器の電気的上流と下流の継電器や遮断器を意識したうえで整定すべきであるということに変わりはありません。

③に記載した例により電流タップを4[A]で整定した場合、動作特性曲線のグラフ上ではCTの二次側における4[A]を「1倍」として計上します。さらに、8[A]を「2倍」として計上します。続けて12[A]を「3倍」,16[A]を「4倍」,…という具合にタップ整定電流に対する倍数が決定されます。この値(倍数)が動作特性曲線の横軸の要素となります。

なお、この二次側電流値にCT比を用いて一次側電流値に置き換えると実際の負荷電流と倍数ということで比較することができます。

「タップ整定電流倍数」が「1」のとき、一次側電流値は以下のとおりです。

I1=320[A]ということですので、その「2倍」は640[A],「3倍」は960[A],「4倍」は1280[A],「5倍」は1600[A]となります。

b.動作特性曲線と動作時間(タイムレバー10)

条件より、発生した過電流は640[A]となっています。これはタップ整定電流の2倍にあたることが①から明らかです。そしてこれにより動作特性曲線からタイムレバー「10」のときの動作時間が割り出せます。

上図から動作時間は0.9[sec]であることがわかりました。ですが、これはあくまでタイムレバー「10」のときの動作時間ですので、条件のタイムレバー「3」で再計算する必要があります。

c.タイムレバーと感度

タイムレバーでは過電流継電器の感度に相当する整定をします。②までの工程からタイムレバーが「10」のときの動作時間が0.9[sec]であることがわかりましたが、タイムレバーを「3」に整定した動作時間に置き換える必要があります。単純な比例計算になります。

上記の計算により動作時間は0.27[sec]となります。この値は動作特性曲線にそのまま当てはめることが可能です。もちろんここではタイムレバー「3」における曲線としてです。

ここではタイムレバー「3」におけるタップ整定電流の2倍の値における動作時間を算出しましたが、3倍の過電流が生じた場合の動作時間も同様に算出可能です。タップ整定電流の「3」倍の電流値は1280[A]です。このときタイムレバー「3」における動作時間を計算すると0.18[sec]となります。

d.「動作特性曲線」と「電流タップ」と「タイムレバー」

このように、「動作特性曲線」をみながら「電流タップ」と「タイムレバー」を整定することで過負荷時の過電流継電器の挙動を制限,制御することが可能となります。

先に述べたとおり、保護協調を強く意識したうえで管理範囲での電力利用に支障が無いように整定する必要があります。是非正しく理解したうえで値を決めるようにしましょう。

4)短絡電流の検出

電源の各極が負荷を介さずに直接電気的に接触してしまうことを短絡またはショートといいます。この時の電流値は非常に大きく、簡単にキロアンペア([kA])クラスになることがあります。この場合、速やかに電路を遮断しなければ発生するジュール熱により機器や配線が焼損することとなり、そしてその被害は最悪の場合、主に火災という形で襲いかかります。

このような最悪のケースを免れるため過電流継電器はいち早く遮断器への遮断命令としての出力をだすこととなります。

①短絡電流

責任分界点を基準とした需要家側の電気事故においてそれが短絡によるものであった場合、短絡電流という大きな電流が発生するということはすでに述べたとおりです。そしてこの短絡電流が実際どれほどであったかが過電流検出に大きく影響することは言うまでもありません。

短絡電流はよく記号で「IS」と表記されます。単位は「A」ですが、その数値の大きさからしばしば「kA」も使用されますので単位の接頭語を見落とさないように注意が必要です。

なお、電路での短絡が発生した場合どれほどの電流が生じる可能性があるのかについての計算方法を短絡電流~便利なパーセントインピーダンス法~に記載していますので参考にしてください。

整定値を超える短絡電流を過電流継電器が検出した場合、この継電器は即座に遮断器への遮断命令を発する必要があるということになりますが、即座に反応してほしいレベルというものをどのように決定していくべきなのでしょうか。

②瞬時要素とは

短絡電流を検出した場合は即座に問題となる電路を遮断する必要があるということですが、具体的に、過電流継電器にどのような整定をする必要があるのか、そしてどのような挙動になるのかを説明します。

短絡電流検出の際には「瞬時要素」というはたらきにより遮断命令出力が実行されます。動作特性曲線にも記載があります。下の図の青枠で囲んだ部分がそれにあたります。

これは先に説明の限時要素とは違い、整定された時間まで出力を待つということはせずに即座に遮断命令出力を実行するというものです。あらかじめ、「この電流値以上は瞬時に動作すべき値である」ということを過電流継電器に整定しておくことで、実際に大電流を検出した際に即座に動作するということとなります。ここに時間的概念が入り込む余地はありません。

もちろん製品良不良判断としての基準時間はあります。JIS規格では50[msec]以下が基準となっています。瞬時要素を検出の場合、50[msec]以内に遮断命令を接点動作にて出力すべきであるということです。この基準と整定される時間とは別ですので混同しないように注意してください。

③瞬時要素における整定値

整定値においては、一般的には短絡電流の計算値を基準としたり契約電力の1000〜1500[%](10〜15倍)を基準に決定しますが、ここでもやはり保護協調を最重要と考えてください。

では、整定に関する計算方法や挙動について説明します。

整定する項目としては「電流タップ」と「瞬時要素電流」になります。ここでの「電流タップ」は限時要素で整定のものと共通で使用することとなります。

整定の例を以下に記載しますが電流タップでの整定値は限時瞬時共通の整定値ですのでこれについては「3)-③」の整定例にあるように「4[A]」とします。そのうえで瞬時要素電流を「30[A]」とします。CT比についても限時要素の例と同様に「400/5[A]」とします。

上記の例で短絡電流がどれくらいになれば、過電流継電器が瞬時要素として動作するのでしょうか。

a.CT比と電流タップ

CT比と電流タップに関する整定値は各々前述のとおり「400/5[A]」,「4[A]」です。

まず、過電流継電器の動作電流の算出基準となる電流値はCT二次側における4[A]となります。もちろん、瞬時要素は短絡電流などの大電流をターゲットとした整定なのでこれのみが動作に影響するわけではないのは明らかです。

このときのCT一次側の電流値も限時要素の場合と同じで320[A]となります。

b.瞬時要素電流

瞬時要素においてはこの電流値「瞬時要素電流」が最終的に動作電流の基準を決定することとなります。この値は一次側電流を表しており、CT二次側が5[A]のときに例にある条件に従い瞬時要素電流を30[A]と整定することにより、30/5で「6」という値が動作の基準となる倍数になります。

先に算出されている320[A]を比例計算することで1920[A]が算出されます。これが瞬時要素動作の一次側電流における値となります。

5)過電流継電器の実際(ex.MOC-A3シリーズ)

ここまで、基本的な過電流継電器の整定値と挙動について説明しました。このことを理解していれば製品化されている過電流継電器を扱うことが可能です。ですが、選定するメーカーや型式で計算式の見た目が違うことに戸惑うこともあります。

非常によく使用されている過電流継電器で三菱電機製の「MOC-A3」シリーズがあります。

この過電流継電器を例に使用(整定)方法の実際をみてみましょう。

①動作特性選択

例に挙げた型式の過電流継電器では動作特性を選択することが可能です。グラフ左側の立ち上がりが大きい順に「超反限時特性」「強反限時特性」「反限時特性」「定限時特性」の中から選択可能となります。選択はディップスイッチによるもので、「SW5」と「SW6」のON/OFF状態でどの特性を選択するかを決定します。

超反限時寄りの特性を選択の場合は負荷機器の突入電流に影響を受けにくくなる反面、過負荷に弱い機器が保護されにくくなります。定限時寄りの特性を選択の場合は先ほどの反対で、過負荷に弱い機器も保護されることになりますが、突入電流など機器発停の影響を受けやすくなり誤動作の割合が大きくなります。

どれを選択すべきかの判断は、負荷の種類や保護対象に依存しますがやはりここでも保護協調の考え方を優先すべきです。

②各特性における動作時間(限時要素)

①で説明した各特性で動作時間が変わるのはもちろんのことですが、その根拠となる計算式が各々に用意されています。ここでは各特性で使用すべき計算式を記載します。

また、一般的に使われている「電流タップ」と「タイムレバー」についてですが、この製品においては電流タップを「限時電流」と呼称し、タイムレバーのことを「タイムダイヤル」や単に「ダイヤル」と呼称しているようです。

さらに、以下に記載の計算式の中で「I」という記号が使用されていますが、これについては限時電流での整定値そのものではなく特性曲線の横軸となるタップ整定電流倍数が代入されます。「D」はダイヤル整定値そのままです。

表現に差がありますので取扱説明書を一読するのみではなかなか馴染めない場合もあるでしょう。ですが、これまでのことをしっかり理解できていれば単に読み替えるだけですのですぐに対応可能であると考えます。

特性曲線自体は取扱説明書にて確認ください。

a.超反限時特性での動作時間

超反限時特性での動作時間を算出する式は以下となります。

b.強反限時特性での動作時間

強反限時特性での動作時間を算出する式は以下となります。

c.反限時特性での動作時間

反限時特性での動作時間を算出する式は以下となります。

d.定限時特性での動作時間

定限時特性での動作時間を算出する式は以下となります。

③瞬時要素における動作時間

このシリーズの過電流継電器では瞬時要素での動作時間が2パターン以上になっているようです。限時特性の選択同様、ディップスイッチでパターン数を選択できるようになっています。「SW2」で2段特性と3段特性を選択し、「SW3」と「SW4」で3段目をどの割合(パーセンテージ)で動作させるかを決定します。整定電流の200[%](2倍)で50[msec]は固定値となっています。

動作時間の詳細や特性曲線自体は限時要素同様に取扱説明書にて確認ください。

6)引き外し方式(トリップ方式)

ここまで、過電流継電器の動作特性や整定値またそれらにより決定づけられる挙動について説明しました。この過電流継電器の挙動は「遮断器」への遮断命令出力へとつながることとなります。これは先の説明の中でも出てきています。では具体的にどのようにして遮断の命令を伝達するのでしょうか。

端的にいうと過電流継電器からの遮断命令はその内部の接点動作にて電流信号や電圧信号に変えられて遮断器に伝えられます。電流や電圧による信号はそれらに応じた遮断器内のコイルに通電され、このコイルの励磁作用にて遮断器の接点が開路(遮断動作)することになります。遮断動作のことを、別途「引き外し」や「トリップ」とよぶことがあります。

これに紐づいて、遮断動作を目的として励磁されるコイルは「引き外しコイル」や「トリップコイル」となどとよばれます。そのため、図面では「TC」と表示されることがあります。もちろんメーカーによっては表現が違う場合もりますので、どれがトリップコイルに相当するのか、またそのための端子はどれなのかについては最終的に取扱説明書等で必ず確認してください。

なお、ここで大事なこととしてトリップのための電源はどうすべきかということがあります。トリップのための電源の違いにより「電流引き外し方式」と「電圧引き外し方式」に大別されます。これについて過電流継電器の遮断命令の伝達方法と共に説明していきます。

①電流引き外し方式

計測および検出に用いる変流器(CT)の二次側電流を利用してトリップコイルを動作させる方法を「電流引き外し方式」といいます。「電流トリップ方式」ともいいます。過電流が発生した場合、通常では計測や検出の信号として取り込んでいる電流の方向を変え、トリップコイル側へ生じさせることにより励磁させるというものです。基準以上の電流がトリップコイルへ流入することにより遮断器の遮断動作が実行されます。

以下に回路図の例を記載します。過電流継電器各端子の名称はメーカーによって違いますので選定の過電流継電器に合わせて読み替えてください。

特に事故等の無い通常状態では、変流器(CT)からの電流信号は端子「K1(K3)」と「L1(L3)」を通ります。

対して事故時は「L1(L3)」端子への回路が過電流遮断器内部で遮断されるため電流は「out R(out T)」端子の回路へ生じることとなります。結果、トリップコイル「TC1(TC2)」が励磁され遮断器の遮断動作へとつながります。

トリップコイル用の電源を別途必要とせず、回路構成上は確実にトリップコイルへ電源供給できるのがメリットですが、過電流継電器の整定値がトリップコイルの動作定格を下回ってしまうと事故時に動作せず遮断ができないというリスクもあります。

②電圧引き外し方式

電流引き外し方式では計測および検出に用いる変流器(CT)の二次側電流を利用してトリップコイルを動作させていましたが、「電圧引き外し方式」ではトリップコイルへの励磁を別電源で実行します。「電圧トリップ方式」ともいいます。

トリップコイルへの電源供給は別電源からということですので、過電流継電器は接点動作にてその電源回路を導通させるだけのシンプルな回路となります。ただし、遮断器内にはトリップコイルと同一の回路上にパレットスイッチという接点が存在し、これはトリップコイルへの励磁継続を防止するはたらきがあります。遮断器主接点と連動で開閉します。

以下に回路図の例を記載します。過電流継電器各端子の名称はメーカーによって違いますので選定の過電流継電器に合わせて読み替えてください。

特に事故等の無い通常状態では、「out c」と「out」間の接点は開路しておりトリップコイル「TC」への励磁は断たれています。パレットスイッチは遮断器主接点と連動ですので閉路しています。

対して事故時は、「out c」と「out」間の接点が閉路しトリップコイルが励磁されます。これにより遮断器が開路し電路が遮断されます。同時にパレットスイッチも開路されトリップコイルの励磁も断たれるということになります。

※コンデンサトリップ方式について

電圧引き外し方式ではトリップコイルの励磁電源を別途用意するということですがこれをコンデンサで実行する方法があります。このときに用いるコンデンサを「コンデンサ引き外し電源装置(CTD)」といいます。「コントリ」という略称でよばれることがあります。

通常状態ではコンデンサへの充電を、事故時は出力端子からの直流電源が「out」「out c」間接点を介してトリップコイルへ供給されることとなります。

4.遮断器

このサイトでは低圧用の配線用遮断器や漏電遮断器について解説している記事はありますが、ここは高圧用の過電流遮断に関する記事ですので当然のことながら高圧における遮断器についての解説をします。

高圧における遮断器の最も大きな特徴は「遮断動作のみ」ということです。これはこの記事の冒頭にも述べていることですが高圧における遮断器では電圧や電流の異常検出はしません。電圧,電流の異常検出についてはあくまで保護継電器が行い、遮断器は保護継電器からの指令により遮断実行をするのみです。

「低圧用の機構をそのまま高圧用に置き換えればそんな面倒は無いのに…」という意見が聞こえてきそうですが、そうはいかないのが高圧以上の域です。

1)遮断器の種類と消弧

高圧では、低圧用のように検出と遮断の機能を一体にした遮断器を使用できない(製作できないまたはしない)理由のひとつに、先に説明の保護継電器の整定方式があり、もうひとつに遮断器の「消弧能力」があると考えます。これらは低圧用の遮断器と大きく異なる部分です。メーカーに訊ねたわけではなく筆者の見解ではありますが、当たらずとも遠からずというところではないでしょうか。もちろん他にも技術上,製造上の理由はあるかもしれません。

「消弧能力」などという耳慣れない言葉がいきなり出てきて「?」となる方もいるでしょうが、まずはこれについて説明します。

結論からいうと「消弧」というのは「アークを打ち消す」ということです。高圧の電圧では、負荷電流の生じている電路を無理やり切り離すことで火花放電よりはるかに規模の大きい「アーク放電」という現象が発生します。これは電気事故原因となり、その影響は高圧での短絡という最悪のかたちであらわれます。

アークは低圧でも確認することができます。暗闇で通電中(負荷電流の生じている状態)の遮断器(ブレーカー)を切ると、この遮断器で青い光が一瞬見えます。また、動作中の機器のコンセントをいきなり引き抜くことでも目視可能ですがこれは危険を伴いますので試さないでください。

高圧でのアーク放電は低圧のそれよりも打ち消すことが難しく、そのためには強力な絶縁能力が必要となります。そしてその難易度は通電電流が大きくなればなるほど高くなります。ということは、高圧での過負荷電流や短絡電流などというとてつもなく大きな電流を遮断するには非常大きな消弧能力が必要となるということは明らかです。

そのためにつくられたのがこの遮断器であり、唯一高圧の過電流を遮断可能な機器となります。そして遮断器にも構造および消弧の手段による種類があります。これについて以降説明します。

①真空遮断器

「真空遮断器」は真空の絶縁能力を利用した遮断器です。「VCB」とよばれることもあります。真空容器内に主開路の接点部を封入しています。

真空であるということは消弧能力が高く、また物理的にも化学的にも伝達物質が存在しないということですので非常に大きな絶縁能力を得ることができます。ことにより構造をコンパクトにすることが可能となります。高圧(特別高圧未満)の電路で汎用的に使用されます。

先の画像はこの真空遮断器になります。

②ガス遮断器

「ガス遮断器」は主開路の接点部を「SF6(六フッ化硫黄)」という不活性ガスで封入し、遮断時はこのガスをアーク発生部に吹きつけることで消弧をねらった遮断器です。「GCB」ともよばれます。このガスは消弧能力と絶縁性能が高いので遮断器に適した気体です。

高い消弧能力や絶縁性能を有するものの真空遮断器より構造上大きく、またコストの面で真空遮断器より不利であることから特別高圧での採用が多いです。

③空気遮断器

「空気遮断器」は遮断時のアーク発生部に大量の圧縮空気を吹き付けることでアークの消弧をねらう遮断器です。「ACB」や「ABB」とよばれることもあります。遮断時は大量にかつ高速で吹き付ける空気により大きな騒音が発生します。また、この圧縮空気用のコンプレッサが別途必要となります。

遮断時の騒音の大きさや広い設置スペースが必要ということから現在ではガス遮断器等へ置き換えられているが一部施設等では現役で使用されています。

④油遮断器

「油遮断器」は主開路の接点部を絶縁油で封入し、この絶縁油の冷却作用を利用してアークの消弧をねらう遮断器です。この遮断器には火災の発生リスクがあるため近年では使用されなくなっています。

2)遮断定格電流

遮断器の性能でまず注視すべき項目として「定格遮断電流」があります。ここの値がどれくらいであるかが遮断器の主たる性能を示しているといえます。もちろん「定格電圧」や「定格電流」など通常使用時の定格を確認し、見合うものを選定する必要があるということは必須です。しかしこれに加えこの定格遮断電流をきっちりおさえておかなければ、事故時の遮断器の役割を果たしてくれるかについて不安が残ってしまいます。

短絡事故のような大きな電流の発生をあらかじめ算出し、その値に見合った遮断器を設置する必要があります。そのためにはパーセントインピーダンス法の利用や複素数計算を用いて算出します。そして算出した結果よりも大きな定格遮断電流の遮断器を選定すべきであるということになります。

定格遮断電流を超える電流を遮断せざるを得ない場合、遮断器の破損は免れないと考えてください。遮断器のカタログや仕様書にはこの定格遮断電流の記載がありますので必ず確認しましょう。

3)定格短時間耐電流

定格遮断電流とともに確認しておきたい項目として「定格短時間耐電流」というものがあります。これは「どれくらいの電流値でどれくらいの時間ならば破損無く耐えられるか」の限界値を示した値です。電流値と時間が各々提示されます。このうち電流値には定格遮断電流が用いられます。

例えば「12.5[kA]」「2[sec]」と表示されている場合は、その遮断器は12.5[kA]で2[sec]間までなら破損無く通電可能ということになります。逆に言うと12.5[kA]を超える電流はもちろん、12.5[kA]を2[sec]を超えて通電してはいけないということになります。

4)定格遮断時間

これは保護継電器から遮断器へ遮断命令が出力されてのち、実際に遮断器での開路が成立するまでの時間となります。年次点検の判定項目にも含まれておりその基準は「3サイクル以内」という表示で規定されています。

この「3サイクル以内」とはどういうことなのでしょうか。説明します。

まず「3サイクル」は電源波形の1サイクル(1周期)を基準としたサイクル数ということです。かいつまんで解説するならば、関東の電源周波数は「50[Hz]」ですが、この1サイクルは「1/50 [sec]」つまり「20[msec](0.02[sec])」となります。関西なら1サイクルは「1/60 [sec]」つまり「16.66…[msec](0.0166…[sec])」となります。

そして3サイクルはこれらの3倍の時間となります。具体的に50[Hz]圏内では「60[msec]」以内、60[Hz]圏内なら「50[msec]」以内ということです。

保護継電器からの遮断命令出力後に、上記にある3サイクルの時間以内に遮断器の遮断が成立する必要があります。

さすがにこの基準を逸脱する遮断器が市場に出回ってしまうことは無いとは考えていますが、必ず仕様書などでは確認しましょう。

「電気工作物とは」というところから電気設備に関わる法規のうち特にポイントとなる部分をピックアップして解説してくれています。接地工事や絶縁の基準はもちろん電線路におけるルールもバッチリ説明されています!

5.高圧の過電流保護は難しい

高圧における過電流事故時の遮断は①過電流継電器の事故電流検出,②過電流継電器からの遮断命令出力,③遮断器のトリップコイルへの励磁,④遮断器による電路遮断実行という手順ですすめられていることを説明しました。

そして、この手順を事故電流に応じて適切なタイミングで実行する必要があるということとそのためのセッティングについてをあわせて解説しました。

ここまで読み進めてくださった方の中には「高圧というだけで、過電流からの保護がこんなにもややこしくなるなんて…」と感じる方もいるでしょう。実際筆者もそう思います。

それだけ、高圧での電気事故は桁違いに危険であるということです。

この記事では過電流からの保護という観点からの解説になっていますが、他にも地絡からの保護や過電圧からの保護など、電気事故時の保護の種類はいくつかあります。これらも複雑な仕組みのうえに成り立っています。電気エネルギーを管理したり設備の設計をするにあたってどれも必要な知識となりますので是非ひとつずつ理解を深めていきたいところです。

未知を調査し、知り得たことを理解して知識として保有し、経験に活かす、ということを繰り返して共に一流の技術者になっていきましょう。

単相でも三相でもこれ一台で様々な電源品質にかかわる項目を計測可能です。筆者もエネルギーの管理などで利用していました!電力はもちろん周波数や力率,高調波など、他にも様々な項目の計測が可能な優れた逸品です!

これ一台で絶縁抵抗と簡易接地抵抗の測定が可能です。精密測定コードセット7245Aを揃えれば精密接地抵抗測定も可能となります。